Feature Extraction for Image Mining

نویسندگان

  • Patricia G. Foschi
  • Deepak Kolippakkam
  • Huan Liu
  • Amit Mandvikar
چکیده

Due to the digitization of data and advances in technology, it has become extremely easy to obtain and store large quantities of data, particularly Multimedia data. Fields ranging from Commercial to Military need to analyze these data in an efficient and fast manner. Presently, tools for mining images are few and require human intervention. Feature selection and extraction is the pre-processing step of Image Mining. Obviously this is a critical step in the entire scenario of Image Mining. Our approach to mine from Images – to extract patterns and derive knowledge from large collections of images, deals mainly with identification and extraction of unique features for a particular domain. Though there are various features available, the aim is to identify the best features and thereby extract relevant information from the images. We have tried various methods for extraction; the features extracted and the techniques used are evaluated for their contribution to solving the problem. Experimental results show that the features used are sufficient to identify the patterns from the Images. The extracted features were evaluated for goodness and tested on test images. An interactive system was developed which allows the user to define new features and to resolve uncertain regions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image authentication using LBP-based perceptual image hashing

Feature extraction is a main step in all perceptual image hashing schemes in which robust features will led to better results in perceptual robustness. Simplicity, discriminative power, computational efficiency and robustness to illumination changes are counted as distinguished properties of Local Binary Pattern features. In this paper, we investigate the use of local binary patterns for percep...

متن کامل

Feature extraction in opinion mining through Persian reviews

Opinion mining deals with an analysis of user reviews for extracting their opinions, sentiments and demands in a specific area, which can play an important role in making major decisions in such area. In general, opinion mining extracts user reviews at three levels of document, sentence and feature. Opinion mining at the feature level is taken into consideration more than the other two levels d...

متن کامل

Feature extraction of hyperspectral images using boundary semi-labeled samples and hybrid criterion

Feature extraction is a very important preprocessing step for classification of hyperspectral images. The linear discriminant analysis (LDA) method fails to work in small sample size situations. Moreover, LDA has poor efficiency for non-Gaussian data. LDA is optimized by a global criterion. Thus, it is not sufficiently flexible to cope with the multi-modal distributed data. We propose a new fea...

متن کامل

Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery

Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...

متن کامل

A comprehensive benchmark between two filter-based multiple-point simulation algorithms

Computer graphics offer various gadgets to enhance the reconstruction of high-order statistics that are not correctly addressed by the two-point statistics approaches. Almost all the newly developed multiple-point geostatistics (MPS) algorithms, to some extent, adapt these techniques to increase the simulation accuracy and efficiency. In this work, a scrutiny comparison between our recently dev...

متن کامل

Contourlet-Based Edge Extraction for Image Registration

Image registration is a crucial step in most image processing tasks for which the final result is achieved from a combination of various resources. In general, the majority of registration methods consist of the following four steps: feature extraction, feature matching, transform modeling, and finally image resampling. As the accuracy of a registration process is highly dependent to the fe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002